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During the last decade, increasing emphasis has been placed on the
use of the equation of state (EOS) approach to model and correlate high-
pressure phase equilibrium behaviour. More successful applications have
employed some form of cubic EOS (1-3) although others (e.g., 4) have been
proposed. However, as the types of systems studied have become more complex,
the inherent weaknesses of a cubic EOS have become apparent. We, in particular,
are interested in studying phase behaviour of systems comprising polymer
molecules in the presence of a supercritical fluid. Here the size disparity
of the component molecules can be large. One approach would have been to
adopt the modified perturbed hard chain theory (5,6) which has been adapted
for mixtures of large and small hydrocarbon molecules. We, however, elected
to study whether lattice theory models could be of value for systems of
our interest. Studies based on this approach, have been attempted for different
systems (7-11), and an interesting general model proposed by Panayiotou
and Vera (12). Our approach is similar in many respects to the last reference
although significant differences appear in treating mixtures.

Pure Components
Theory

Molecules are assumed to "sit" on a lattice of coordination number
z and of cell size vy. Each molecule (species 1) is assumed to occupy rq
sites (where ry can be fractional), and the lattice has empty sites ‘called
holes. There are Np holes and N; molecules. To account for the connectivity
of the segments of a molecule, an effective chain lenth qq is defined as,

2qQq1 = zry ~ 2rq; ® 2 1)

wherein it has been assumed that chains are not cyclic. zqq now represents
the effective number of external contacts per molecule. The interaction
energy between segments of molecules is denoted by -€44, while the interaction
energy of any species with a hole is zero. Only nearest neighbour interactions
are considered, and pairwise additivity is assumed. The canonical partition
function for this ensemble can be formally represented as:
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where B= 1/kT. On the assumption of random mixing of holes and molecules,
and following the approach of Panayiotou and Vera (12), we obtain an expression
for @ which is valid outside the critical region of the pure component,
il.e.,
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where § 1s the number of internal arrangements of a molecule and ¢ a symmetry
factor. Using the following reducing parameters

(z/2)eqq = P*wy = RT* )
and defining V, the total volume of the system,
V= VH(No* riNy) 5)

an EOS that defines the pure component is obtained, i.e.,
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Here & 1s the effective surface fraction of molecules and the tilde (™)
denotes reduced variables. All quantities except v, in the EOS are reduced
by the parameters in Eq.(4). The specific volume v, 1Is reduced by v ,the
molecular hard-core volume,

v' - Nyrqvy 7
Expressions for the chemical potential of a pure component can also be derived

from Eq.(3) and standard thermodynamiecs (13).

Determinat ion of pure component parameters

In order to use the obtalned EOS to model real substances one needs
to obtain €19 and v' . For a pure component below its critical point, a technique
suggested by Joffe et al., (14) was used. This involves the matching of
chemical potentials of each component in the liquid and the vapour phases
at the vapour pressure of the substance. Also the actual and predicted saturated
liquid densities were matched. The set of equations so obtained were solved
by the use of a standard Newtons method to yileld the pure component para-
meters. Values of €91 and v for ethanol and water at several temperatures
are shown in Table 1. In this calculation vy and z were set at 9.75 x 107
m3 mole~! and 10, respectively (12). The capability of the lattice EOS to
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fit pure component VLE was found to be quite insensitive to variations in
z (6<z<26) and vg (1.0x 10”7 m3mole~T<vy<1.5x 1075 n3mole™1).

For SCF, the pure component parameters were obtained by fitting P-v
data on an isotherm. !:reliminary data for these substances suggest that
although the computed v is a function of temperature, €71 is a constant
within regression error.

Discussion
In order to qualitatively understand the behaviour of the lattice

E0S, it was examined in the limit of small molecules ( q,r — 1). In this
case Eq.(6) simplifies to the form,
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The first term can be identified with a "hard-sphere" repulsion term, while
the second acconts for attractive forces. The second term can be rewritten
as,

Py v ( P**2) a
Z, = - - —_— s - 9)
RT v2 v2

Thus, the attractive term represented in Eq.(9) has the same form as the
attractive term in the van der Waals EOS (15). On examining the data in
Table 1, and computing the parameter a in Eq.(9), it was found that for
variations of up to 150K, the variation of this parameter was always less
than 3%, although the computed values of v* and €11 themselves showed a
7% variation. In the limit of small molecules, therefore, the lattice EOS
has a term that approximates the van der Waals type attractive term closely.

The behaviour of the repulsive term of the lattice EOS is more complicated
and will not be discussed in detail. At liquid-like densities this repulsion
term is a better approximation to the hard spheres repulsion than the van

der Waals repulsion term. At gas-like densities, however, the opposite behaviour
is observed.

Binary Mixtures
Theor'!

Consider a mixture of Ng holes, N1 molecules of species 1 and Np molecules
of species 2, Following Panaylotou and Vera (12) the following mixing rules
are assumed for the mixture parameters rp, qM and vy .

ry = in ri 10)
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Lattice coordination numbers (z) and the cell volumes (vyg) for both the
pure components and mixture lattices are assumed to have the same value. The
partition function for this ensemble can be formulated following Eq.(2). It
is assumed now that the partition function, far from the binary critical
point can be approximated by its largest term. Since molecule segments and
holes can distribute themselves nonrandomly, the partition function must
incorporate terms to account for this effect. The nonrandomness correction
Tij allows for distribution of the segments of species i about the segments
of species j over the random values of such contacts. It is defined through
the equation

Nig 7 Ny Ty 13)
where Njj is the actual number of 1-j contacts and Nijo is the number of
i-j contacts in the completely random case. Expressions for the nonrandomness
correction must be obtained through the solution of the "quasichemical"
equations(16). These equations can be solved in a closed analytic form only
in the case of a two component system. In order to ensure the mathematical
tractability of the binary results, it is therefore assumed that holes distribute
randomly while molecules do not.

The solution for the quasichemical expressions for the pseudo
two component system ylelds an expression for the nonrandomness correction
Tij. which can be represented mathematically as,

2
T = — - 14)
1 1+ (1 -4, 8. (1-gn2
17
where,
g = exp (8Ae/kT), 15)
be = 11 + €22 ~ 2€92 16)

31 is the surface fraction of i molecule segments on a hole-free basis and
8 is the total surface area fraction of molecule segments. Eq.(16) immediately
suggests a combining rule for e, as a measure of the departure of the mixture
from randomness, i.e.,

€4y 4 1=J 17)

€44 =
J 0.5 (eg1 *+ €35 ) (1 = Kky1y), 1=J

The mixing rule for € arises naturally through the formulation of the canonical
partition function, i.e.,
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An EOS for the mixture and chemical potentials for component i in the mixture
can now be derived using standard thermodynamics.
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where uj represents the chemical potential of component 1 in a binary mixture,
J=3-1 and A(T) is some universal temperature function. §;4 is the Dirac-delta
function. Parameters used for obtaining these equations in a dimensionless
form are defined in manner analogous to Eq. (4).

The mixture EOS [Eq. (19)] has the three terms that are present in the
pure component EOS. Also, it has an additional term which accounts for the
nonrandomness corrections that have been incorporated into the partition
function expression. This last term, for all cases tested, is always at
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least 4 orders of magnitude smaller than the other three terms and can effec-
tively be neglected. However, it 1s retained for the sake of mathematical
consistency.

Results and Discussion

The expressions derived for the EOS and the chemical potential of
component i in a binary mixture were used to model the phase equilibria
of binary mixtures. A set of non-linear equations was obtained and solved
by the use of a Newton's method.

Mixtures of small molecules (acetone-benzene, ethanol-water) were
considered first. In Figures 1 and 2, a comparison is made between the predicted
and experimental low-pressure VLE data (17,18) for these systems. An excellent
fit to the data is obtained in both cases, with the use of one apparently
temperature independent parameter (kij) per binary.

The interesting aspect of this modelling is the temperature indepen-
dence of kyy. It was shown earlier that, if the pure components were small
molecules, the lattice EOS has an attractive term with an essentially temp-
erature independent a. Extending this argument to mixtures results in the
prediction of the temperature independence of kij for binary mixtures of
small molecules. A temperature independent interaction parameter is a property
of the binary, which could, in concept, be calculated by group contribution
techniques. This scheme, if implemented, would make the modelling technique
a predictive one.

In examining the sensitivity of the model to the assumed value
of z, it was found for the ethanol-water system that the model predictions
were insensitive to the z value in the vicinity of z=10. For large values
of z (z>15), however, it was found that the model was incapable of even
qualitatively prediciting mixture VLE behaviour.

The applicability of the lattice EOS in the modelling of the
VLE of mixtures of molecules of different sizes was examined next. The results
for the HyS-n-heptane system at 310K and 352K are shown in Figure 3 (19). For
the temperatures modelled, it is seen that there is a good agreement between
the prediction and the experimental data, again with the use of one temperature
independent binary interaction parameter.

The lattice model thus provides the capability to obtain good,
quantitative fits to experimental VLE data for binary mixtures of molecules
below their critical point. Its value lies in the fact that it performs
equally well regardless of the size differences between the component molecules.

The model was then extended to the phase equilibrium modelling
of solid-supercritical fluid (SCF) binaries. In Figures 4 and 5, the model
behaviour is compared to experimental data for the naphthalene-carbon dioxide
binary at 308 and 318K respectively. Outside the critical region, the lattice
EOS provides a good fit to the measured data (20). The kij values, however,
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were not temperature independent.

The agreement of the model with the data in the critical region
is not satisfactory. The reason for this failure is believed to be two fold.
Firstly, the partition function expression for the binary 1s valid in a
region where the largest term in the summation in Eq.(2) dominates all other
terms. In the critical reglon this assumption breaks down. Secondly, it
has been assumed (for mathematical tractability) that holes distribute randomly
while molecules do not. This assumption could be another cause of the poor
fits obtained in the critical region.

In order to test the applicability of the model to polymer-SCF
systems, a hypothetical system of COp and a monodisperse x-mer with a monomeric
unit molecular weight of 100 was simulated. Reasonable values for the pure
component parameters for the polymer were chosen (12). Constant values of
kij were used for the polymer system, where the degree of polymerization,
x, varied between 1 and 7. It was assumed that all chains had the same ¢,
and v* scaled as the molecular weight of the chain. Figure 6 shows the results
of the predicted mole fraction of the x~mer in the SCF phase.

The model simulates an experimentally observed trend (20) that
the solubility of chains in a SCF shows a strong inverse dependence on
the molecular mass of the polymer. Figure 6 shows that changing the molecular
welght of the chain molecule from 100 to 700 causes a reduction in solubility
of nearly 6 orders of magnitude. The model also shows that all the solubility
plots tend to flatten out around 300 bar, as observed in experiments. Classically
used EOS like a modified cubic EOS (22), when applied to such systems, produce
solubility curves which tend to show a sharp maximum around 200 bar. For
polymer-SCF systems, therefore, the lattice EOS is believed to be superior
to modified cubic EOS.

Conclusions

A new attempt towards the development of a statistical-mechanics
based model for mixtures of molecules of disparate sizes has been made. Results
obtained to date demonstrate that the lattice EOS is superior to modified
cubic EOS for polymer~SCF equilibria, while for the other systems, outside
the critical region, it performs as well as classically employed techniques. The
removal of the assumption regarding the random mixing of holes is expected
to improve the performance of the model in the critical region.

The temperature independence of the a parameter [Eq.(9)] and

the binary interaction parameter (kij) for systems of small molecules are
interesting phenomena that merit closer examination.
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Table 1: Pure Component parameters for ethanol and water
at several temperatures ( z=10, vy=9.75 x 1076 m3mole™1)

Ethanol Water
T (K) €117k (K)  v* (cm3g™1) €117k (X) v* (em3g™1)
283 1357.59 1.2018 3596.56 0.9602
293 1355.47 1.2016 3516.20 0.9685
303 1314.34 1.2193 3438.16 0.9767
313 1294.18 1.2276 3362.54 0.9588
323 1274.90 1.2358 3289.36 0.9943
333 1256.49 1.2437 3218.53 1.0030
343 1238.87 1.2515 3150.14 1.0123
353 1222.04 1.2589 3083.99 1.0216
363 1205.89 1.2661 3020.02 1.0310
373 1190.43 1.2731 2958.16 1.0406
393 1161.42 1.2864 2840.43 1.0602
413 1134.68 1.2989 2730.13 1.0804
433 1109.83 1.3109 2626.57 1.1011
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Figure 1: Comparison of lattice model prediction and experimental data
of Weisphart (17) for the acetone-benzene binary at 303,
and 323 K (2=10, vy=9.75 x 1076 m3mole™, kyy =0.02 }.
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Figure 2: Comparison of the experimental data of Pemberton and Mash (18)

for the ethanol-water binary at 323, 343 and 363K with the lattice
model predictions with z=10, vy=9.75 x 1076 m3mole™} and ki 4=0.085.
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Comparison of the lattice model predictions and experimental
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Figure 1: Comparison of the model predictions for the COp-napthalene binary
at 308K with the experimental data of Tsekhanskaya et. al.,
(20).(2=10, vy=9.75 x 1078 m3mole™1, kyj =0.123).
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Latticemodel predictions for the equilibrium fluid phase composition
for a COp-polymer system at 328K. Molecular weight of a monomeric
unit is 100, while the degree of polymerization, x, varies between
1 and 7. (z=10, vH=9.75 x 10~ 6m3mole~", kyj =0.10).
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